Monday, December 10, 2007

Technology's Impact on Programs

Terminology of Change

Computer power has increased exponentially for nearly fifty years [73] in many areas including processor, memory and mass-storage capacity, circuit density, hardware reliability and I/O bandwidth. The growth has continued in the past decade, along with sophisticated instruction pipelines on single CPUs, placement of multiple CPUs on the desktop and an explosion in network connectivity.

The dramatic increases in communication and computing power have triggered fundamental changes in commercial software.

  • Large database and other business applications, which formerly executed on a mainframe connected to terminals, are now distributed over smaller, less expensive machines.

  • Terminals have given way to desktop workstations with graphical user interfaces and multimedia capabilities.

  • At the other end of the spectrum, standalone personal computer applications have evolved to use network communication. For example, a spreadsheet application is no longer an isolated program supporting a single user because an update of the spreadsheet may cause an automatic update of other linked applications. These could graph the data or perform sales projections.

  • Applications such as cooperative editing, conferencing and common whiteboards facilitate group work and interactions.

  • Computing applications are evolving through sophisticated data sharing, realtime interaction, intelligent graphical user interfaces and complex data streams that include audio and video as well as text.

These developments in technology rely on communication, concurrency and asynchronous operation within software applications.

Asynchronous operation occurs because many computer system events happen at unpredictable times and in an unpredictable order. For example, a programmer cannot predict the exact time at which a printer attached to a system needs data or other attention. Similarly, a program cannot anticipate the exact time that the user presses a key for input or interrupts the program. As a result, a program must work correctly for all possible timings in order to be correct. Unfortunately, timing errors are often hard to repeat and may only occur once every million executions of a program.

Concurrency is the sharing of resources in the same time frame. When two programs execute on the same system so that their execution is interleaved in time, they share processor resources. Programs can also share data, code and devices. The concurrent entities can be threads of execution within a single program or other abstract objects. Concurrency can occur in a system with a single CPU, multiple CPUs sharing the same memory, or independent systems running over a network. A major job of a modern operating system is to manage the concurrent operations of a computer system and its running applications. However, concurrency control has also become an integral part of applications. Concurrent and asynchronous operations share the same problems—they cause bugs that are often hard to reproduce and create unexpected side effects.

Communication is the conveying of information by one entity to another. Because of the World Wide Web and the dominance of network applications, many programs must deal with I/O over the network as well as from local devices such as disks. Network communication introduces a myriad of new problems resulting from unpredictable timings and the possibility of undetected remote failures.

The remainder of this chapter describes simplified examples of asynchronous operation, concurrency and communication. The buffer overflow problem illustrates how careless programming and lack of error checking can cause serious problems and security breaches. This chapter also provides a brief overview of how operating systems work and summarizes the operating system standards that are used in the book.

Time and Speed

Operating systems manage system resources: processors, memory and I/O devices including keyboards, monitors, printers, mouse devices, disks, tapes, CD-ROMs and network interfaces. The convoluted way operating systems appear to work derives from the characteristics of peripheral devices, particularly their speed relative to the CPU or processor. Table 1.1 lists typical processor, memory and peripheral times in nanoseconds. The third column shows these speeds slowed down by a factor of 2 billion to give the time scaled in human terms. The scaled time of one operation per second is roughly the rate of the old mechanical calculators from fifty years ago.

Table 1.1. Typical times for components of a computer system. One nanosecond (ns) is 10–9 seconds, one microsecond (ms) is 10–6 seconds, and one millisecond (ms) is 10–3 seconds.

item

time

scaled time in human terms (2 billion times slower)

processor cycle

0.5 ns

(2 GHz)

1

second

cache access

1 ns

(1 GHz)

2

seconds

memory access

15 ns

30

seconds

context switch

5,000 ns

(5 ms)

167

minutes

disk access

7,000,000 ns

(7 ms)

162

days

quantum

100,000,000 ns

(100 ms)

6.3

years

Disk drives have improved, but their rotating mechanical nature limits their performance. Disk access times have not decreased exponentially. The disparity between processor and disk access times continues to grow; as of 2003 the ratio is roughly 1 to 14,000,000 for a 2-GHz processor. The cited speeds are a moving target, but the trend is that processor speeds are increasing exponentially, causing an increasing performance gap between processors and peripherals.

The context-switch time is the time it takes to switch from executing one process to another. The quantum is roughly the amount of CPU time allocated to a process before it has to let another process run. In a sense, a user at a keyboard is a peripheral device. A fast typist can type a keystroke every 100 milliseconds. This time is the same order of magnitude as the process scheduling quantum, and it is no coincidence that these numbers are comparable for interactive timesharing systems.

Exercise 1.1

A modem is a device that permits a computer to communicate with another computer over a phone line. A typical modem is rated at 57,600 bps, where bps means "bits per second." Assuming it takes 8 bits to transmit a byte, estimate the time needed for a 57,600 bps modem to fill a computer screen with 25 lines of 80 characters. Now consider a graphics display that consists of an array of 1024 by 768 pixels. Each pixel has a color value that can be one of 256 possible colors. Assume such a pixel value can be transmitted by modem in 8 bits. What compression ratio is necessary for a 768-kbps DSL line to fill a screen with graphics as fast as a 57,600-bps modem can fill a screen with text?

Answer:

Table 1.2 compares the times. The text display has 80 x 25 = 2000 characters so 16,000 bits must be transmitted. The graphics display has 1024 x 768 = 786,432 pixels so 6,291,456 bits must be transmitted. The estimates do not account for compression or for communication protocol overhead. A compression ratio of about 29 is necessary!


Table 1.2. Comparison of time estimates for filling a screen.

modem type

bits per second

time needed to display

text

graphics

1979 telephone modem

300

1 minute

6 hours

1983 telephone modem

2,400

6 seconds

45 minutes

current telephone modem

57,600

0.28 seconds

109 seconds

current DSL modem

768,000

0.02 seconds

8 seconds

Multiprogramming and Time Sharing

Observe from Table 1.1 that processes performing disk I/O do not use the CPU very efficiently: 0.5 nanoseconds versus 7 milliseconds, or in human terms, 1 second versus 162 days. Because of the time disparity, most modern operating systems do multiprogramming. Multiprogramming means that more than one process can be ready to execute. The operating system chooses one of these ready processes for execution. When that process needs to wait for a resource (say, a keystroke or a disk access), the operating system saves all the information needed to resume that process where it left off and chooses another ready process to execute. It is simple to see how multiprogramming might be implemented. A resource request (such as read or write) results in an operating system request (i.e., a system call). A system call is a request to the operating system for service that causes the normal CPU cycle to be interrupted and control to be given to the operating system. The operating system can then switch to another process.

Exercise 1.2

Explain how a disk I/O request might allow the operating system to run another process.

Answer:

Most devices are handled by the operating system rather than by applications. When an application executes a disk read, the call issues a request for the operating system to actually perform the operation. The operating system now has control. It can issue commands to the disk controller to begin retrieving the disk blocks requested by the application. However, since the disk retrieval does not complete for a long time (162 days in relative time), the operating system puts the application's process on a queue of processes that are waiting for I/O to complete and starts another process that is ready to run. Eventually, the disk controller interrupts the CPU instruction cycle when the results are available. At that time, the operating system regains control and can choose whether to continue with the currently running process or to allow the original process to run.

UNIX does timesharing as well as multiprogramming. Timesharing creates the illusion that several processes execute simultaneously, even though there may be only one physical CPU. On a single processor system, only one instruction from one process can be executing at any particular time. Since the human time scale is billions of times slower than that of modern computers, the operating system can rapidly switch between processes to give the appearance of several processes executing at the same time.

Consider the following analogy. Suppose a grocery store has several checkout counters (the processes) but only one checker (the CPU). The checker checks one item from a customer (the instruction) and then does the next item for that same customer. Checking continues until a price check (a resource request) is needed. Instead of waiting for the price check and doing nothing, the checker moves to another checkout counter and checks items from another customer. The checker (CPU) is always busy as long as there are customers (processes) ready to check out. This is multiprogramming. The checker is efficient, but customers probably would not want to shop at such a store because of the long wait when someone has a large order with no price checks (a CPU-bound process).

Now suppose that the checker starts a 10-second timer and processes items for one customer for a maximum of 10 seconds (the quantum). If the timer expires, the checker moves to another customer even if no price check is needed. This is timesharing. If the checker is sufficiently fast, the situation is almost equivalent to having one slower checker at each checkout stand. Consider making a video of such a checkout stand and playing it back at 100 times its normal speed. It would look as if the checker were handling several customers simultaneously.

Exercise 1.3

Suppose that the checker can check one item per second (a one-second processor cycle time in Table 1.1). According to this table, what would be the maximum time the checker would spend with one customer before moving to a waiting customer?

Answer:

The time is the quantum that is scaled in the table to 6.3 years. A program may execute billions of instructions in a quantum—a bit more than the number of grocery items purchased by the average customer.

If the time to move from one customer to another (the context-switch time) is small compared with the time between switches (the CPU burst time), the checker handles customers efficiently. Timesharing wastes processing cycles by switching between customers, but it has the advantage of not wasting the checker resources during a price check. Furthermore, customers with small orders are not held in abeyance for long periods while waiting for customers with large orders.

The analogy would be more realistic if instead of several checkout counters, there were only one, with the customers crowded around the checker. To switch from customer A to customer B, the checker saves the contents of the register tape (the context) and restores it to what it was when it last processed customer B. The context-switch time can be reduced if the cash register has several tapes and can hold the contents of several customers' orders simultaneously. In fact, some computer systems have special hardware to hold many contexts at the same time.

Multiprocessor systems have several processors accessing a shared memory. In the checkout analogy for a multiprocessor system, each customer has an individual register tape and multiple checkers rove the checkout stands working on the orders for unserved customers. Many grocery stores have packers who do this.

UNIX Standards

Not too long ago, two distinct and somewhat incompatible "flavors" of UNIX, System V from AT&T and BSD from Berkeley coexisted. Because no official standard existed, there were major and minor differences between the versions from different vendors, even within the same flavor. Consequently, programs written for one type of UNIX would not run correctly or sometimes would not even compile under a UNIX from another vendor.

The IEEE (Institute of Electronic and Electrical Engineers) decided to develop a standard for the UNIX libraries in an initiative called POSIX. POSIX stands for Portable Operating System Interface and is pronounced pahz-icks, as stated explicitly by the standard. IEEE's first attempt, called POSIX.1, was published in 1988. When this standard was adopted, there was no known historical implementation of UNIX that would not have to change to meet the standard. The original standard covered only a small subset of UNIX. In 1994, the X/Open Foundation published a more comprehensive standard called Spec 1170, based on System V. Unfortunately, inconsistencies between Spec 1170 and POSIX made it difficult for vendors and application developers to adhere to both standards.

In 1998, after another version of the X/Open standard, many additions to the POSIX standard, and the threat of world-domination by Microsoft, the Austin Group was formed. This group included members from The Open Group (a new name for the X/Open Foundation), IEEE POSIX and the ISO/IEC Joint Technical Committee. The purpose of the group was to revise, combine and update the standards. Finally, at the end of 2001, a joint document was approved by the IEEE and The Open Group. The ISO/IEC approved this document in November of 2002. This specification is referred to as the Single UNIX Specification, Version 3, or IEEE Std. 1003.1-2001, POSIX. In this book we refer to this standard merely as POSIX.

Each of the standards organizations publishes copies of the standard. Print and electronic versions of the standard are available from IEEE and ISO/IEC. The Open Group publishes the standard on CD-ROM. It is also freely available on their web site [89]. The copy of the standard published by the IEEE is in four volumes: Base Definitions [50], Shell and Utilities [52], System Interfaces [49] and Rationale [51] and is over 3600 pages in length.

The code for this book was tested on three systems: Solaris 9, Redhat Linux 8 and Mac OS 10.2. Table 1.3 lists the extensions of POSIX discussed in the book and the status of implementation of each on the tested systems. This indication is based on the man pages and on running the programs from the book, not on any official statement of compliance.

Table 1.3. POSIX extensions supported by our test systems.

code

extension

Solaris 9

Redhat 8

Mac OS 10.2

AIO

asynchronous input and output

yes

yes

no

CX

extension to the ISO C standard

yes

yes

yes

FSC

file synchronization

yes

yes

yes

RTS

realtime signals extension

yes

yes

no

SEM

semaphores

yes

unnamed only

named only

THR

threads

yes

almost

yes

TMR

timers

yes

yes

no

TPS

thread execution scheduling

yes

yes

yes

TSA

thread stack address attribute

no

no

no

TSF

thread-safe functions

yes

strtok_r only

yes

XSI

XSI extension

yes

yes

timers, getsid, ftok, no IPC

_POSIX_VERSION

199506

199506

198808

A POSIX-compliant implementation must support the POSIX base standard. Many of the interesting aspects of POSIX are not part of the base standard but rather are defined as extensions to the base standard. Table E.1 of Appendix E gives a complete list of the extensions in the 2001 version of POSIX. Appendix E applies only to implementations that claim compliance with the 2001 version base standard. These implementations set the symbol _POSIX_VERSION defined in unistd.h to 200112L. As of the writing of this book, none of the systems we tested used this value. Systems that support the previous version of POSIX have a value of 199506L. Differences between the 1995 and 2001 standards for features supported by both are minor.

The new POSIX standard also incorporates the ISO/IEC International Standard 9899, also referred to as ISO C. In the past, minor differences between the POSIX and ISO C standards have caused confusion. Often, these differences were unintentional, but differences in published standards required developers to choose between them. The current POSIX standard makes it clear that any differences between the published POSIX standard and the ISO C standard are unintentional. If any discrepancies occur, the ISO C standard takes precedence.

No comments: